J. Number Theory 143(2014), no.3, 293-319. GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES

نویسنده

  • Zhi-Hong Sun
چکیده

Abstract. For any positive integer n and variables a and x we define the generalized Legendre polynomial Pn(a, x) by Pn(a, x) = Pn k=0 a k −1−a k ( 1−x 2 ). Let p be an odd prime. In this paper we prove many congruences modulo p related to Pp−1(a, x). For example, we show that Pp−1(a, x) ≡ (−1)〈a〉p Pp−1(a,−x) (mod p), where a is a rational p− adic integer and 〈a〉p is the least nonnegative residue of a modulo p. We also generalize some congruences of Zhi-Wei Sun, and establish congruences for Pp−1 k=0 2k k 3k k Æ 54 and Pp−1 k=0 a k b−a k (mod p).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the generalized Legendre transform and monopole metrics

In the generalized Legendre transform construction the Kähler potential is related to a particular function. Here, the form of this function appropriate to the k-monopole metric is calculated from the known twistor theory of monopoles.

متن کامل

Monomiality principle and related operational techniques for orthogonal polynomials and special functions

Abstract— The concepts and the related aspects of the monomiality principle are presented in this paper to explore different approaches for some classes of orthogonal polynomials. The associated operational calculus introduced by the monomiality principle allows us to reformulate the theory of Hermite, Laguerre and Legendre polynomials from a unified point of view. They are indeed shown to be p...

متن کامل

On the Genus of Generalized Laguerre Polynomials

belong to one of the three family of orthogonal polynomials, the other two being Jacobi and Legendre. In addition to their important roles in mathematical analysis, these polynomials also feature prominently in algebra and number theory. Schur ([7], [8]) pioneered the study of Galois properties of specializations of these orthogonal polynomials, and Feit [1] used them to solve the inverse Galoi...

متن کامل

Classical Special Functions and Lie Groups

The classical orthogonal functions of mathematical physics are closely related to Lie groups. Specifically, they are matrix elements of, or basis vectors for, unitary irreducible representations of lowdimensional Lie groups. We illustrate this connection for: The Wigner functions, spherical harmonics, and Legendre polynomials; the Bessel functions; and the Hermite polynomials. These functions a...

متن کامل

On the 2-orthogonal polynomials and the generalized birth and death processes

The birth and death processes are closely related to the orthogonal polynomials. The latter allows determining the stochastic matrix associated with these processes. Let us also note that these processes are stationary Markov processes whose state space is the nonnegative integers. Many authors treated the question of the existing relationship between the birth and death processes and the ortho...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014